الجمهورية الجزائرية الديموقراطية الشعبية تحضير امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة + لغات أجنبية

المادة: رياضيات جمع الأستاذ: عبد الحميد بوقطوف

الموضوع الأول

التمرين الأول:

عين بواقي القسمة الإقليدية للعدد 2^n على 5 من أجل كل عدد طبيعي n حيث: $n \in \{1; 2; 3; 4\}$

 $2^{4n} \equiv 1$ [5] بين أنه من أجل كل عدد طبيعي n فإن: (2

 $^{-}$ 3 استنتج بواقي القسمة الإقليدية لكل من: $^{-}$ 2 $^{4n+3}$ 3، $^{-}$ 2 $^{4n+3}$ 3 على 3.

 2^{2015} عين باقي قسمة كل من 2^{1436} و 2^{2015} على 2^{1436}

5) تحقق أن: $[5] \, 2 \equiv 2017$ ، ثم استنتج باقي قسمة 2017^{2014} على 5.

التمرين الثاني:

یی: متتالیة عددیة معرفة کما یلی: (u_n)

$$\begin{cases} u_0 = 5 \\ u_{n+1} = 3u_n + 1 \end{cases}$$

 u_3 و u_2 ، u_1 و u_3 (1) أحسب كلا من u_1

 \mathbb{N} نضع: $u_n = u_n + \frac{1}{2}$ من أجل كل $u_n = u_n + \frac{1}{2}$

أ- برهن أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول.

n بدلالة u_n بين عبارة الحد العام v_n بدلالة n بدلالة u_n

 $S_n=v_0+v_1+\cdots+v_n$: بدلالة S_n بدلالة $S_n=u_0+u_1+\cdots+u_n$ ب- استنتج المجموع $S'_n=u_0+u_1+\cdots+u_n$ ب

التمرين الثالث:

نتكن f الدالة المعرفة على $\mathbb{R} - \left\{\frac{1}{2}\right\}$ كما يلي: 3 + 2 x

 $f(x) = \frac{3+2x}{1-2x}$

 $oldsymbol{\cdot}(O;ec{t},ec{f})$ تمثيلها البياني في معلم متعامد ومتجانس $oldsymbol{(}C_{f}ig)$ و

أدرس تغيرات الدالة f ثم شكل جدول تغيراتها.

. (C_f) استنتج المستقيمات المقاربة للمنحنى (2

عين احداثيات نقط تقاطع المنحنى (C_f) مع محوري الإحداثيات.

 $x_0=0$ أكتب معادلة المماس (Δ) عند النقطة ذات الفاصلة (4

 (C_f) أرسم المماس (Δ) والمنحنى (5

الموضوع الثاني

التمرين الأول:

ين:
$$u_n$$
 متتالية هندسية حدودها موجبة، معرفة بما يلي $u_6=448$ $u_3 imes u_5=12544$

- أحسب الحد u_4 ثم الأساس q لهذه المتتالية. (1
 - . أحسب الحد الأول u_0 لهذه المتتالية (2
 - $u_0 = 2$ و $u_0 = 7$ نضع: (3
 - n بدلالة u_n بكتب عبارة ا
- بين أن 896 هو حد من حدود المتتالية (u_n) وحدد رتبته. (4
 - $S = u_6 + u_7 + \dots + u_n$ أحسب المجموع: (5

التمرين الثاني:

- ه، a و c أعداد صحيحة بحيث باقي القسمة الإقليدية للعدد a على c هو c ، باقي القسمة الإقليدية للعدد c على c هو c .
 - a^2-b^2 و a imes b و a imes b عين باقي القسمة الإقليدية على 7 لكل من العددين:
 - $c^{2n}\equiv 1$ [7] اً- أثبت أنه من أجل كل عدد طبيعي: (2
 - ب- تحقق أن: [7] 6 ≡ 2015.
- استنتج باقي القسمة الإقليدية لكل من العددين: 2015²⁰¹⁴ و 2015²⁰¹⁵ على 7.

التمرين الثالث:

نعتبر الدالة المعرفة على بـ:

$$f(x) = -x^3 + 3x - 2$$

- . $(O; \vec{t}, \vec{j})$ تمثيلها البياني في المستوي المزود بمعلم متعامد ومتجانس (C_f)
 - $-\infty$ أ- أحسب نهايتي الدالة f عند $-\infty$ و $+\infty$
 - ب- أدرس تغيرات الدالة f وشكل جدول تغيراتها.
 - $f(x) = -(x-1)^2(x+2)$: \mathbb{R} من أجل كل x من أجل كل (2
- . (C_f) برهن أن النقطة A التي فاصلتها x=0 هي نقطة انعطاف للمنحني (3
- تحقق أن النقطة B(2;-4) هي نقطة من المنحنى C_f ، ثم أوجد معادلة للماس (4 عند النقطة B.
 - $(O; \vec{\iota}, \vec{j})$ في المعلم (C_f) و (C_f) في المعلم (5